Verticale QRO bande basse e spazi ridotti

— aggiornamento progetto —

… e accettabili compromessi …….

ovvero : la verticale a modo mio ……

un collega mi ha chiesto di aiutarlo a realizzare una verticale in banda 80 metri, con possibilità a comando di utilizzo in 160 ed eventualmente anche in 40.

Parametri di progetto: spazio ridotto, impatto visivo ed ambientale accettabili, buona efficienza

andiamo con ordine

 

[progetto]

la teoria di funzionamento e progettazione di una verticale è chiara e ampiamente diffusa seppur con diverse interpretazioni. Nel nostro caso per ragioni anche meccaniche, uno stilo di circa 20 metri (1/4L) è impraticabile, quindi….

  1. Altezza massima: circa 17 metri
  2. Materiali: tubo in alluminio con diametri variabili tra 60 e 19mm e spessori adeguati a supportare la struttura. Sezioni da 220cm bloccate con morsetti inox per usi intensivi.
  3. Base : profilo “T” in acciaio su base interrata in cemento.
  4. Fissaggio radiatore : con 3 morsetti Stauff in polipropilene e abbattimento manuale
  5. Piano di terra: a raggiera (inox) alla base ricoperto da sottile strato di terra. Opzione per altri radiali sopra il terreno anche sollevati (vedi sotto)
  6. Cablaggi interni in rame argentato isolato in teflon
  7. W2DU su RG142
  8. Bulloneria inox.

Per esperienze precedenti si è scelto di non installare un sistema di tiranti. Nonostante i forti venti presenzi in zona non si sono verificati particolari problemi….. salvo la normale “dinamica” meccanica……


 

[adattamento] quanto riguarda l’adattamento, la scelta di effettuarlo alla base è la via più semplice e aperta ad interventi evolutivi

Si può costruire un induttanza fissa con prese multiple commutabili oppure utilizzare un induttore variabile  motorizzato e controllato a distanza. Ho scelto di utilizzare due induttanze variabili in serie che consentono un migliore affinamento del sistema radiante. L’intero sistema di adattamento è contenuto in una scatola stagna posizionata alla base dell’antenna.

è a tutti gli effetti un classico L-Match. Se realizzato con materiali idonei permette di ottenere la massima efficienza pur essendo circuitale te molto semplice.

Potrebbe essere sostituito da una induttanza a prese multiple ma qui c’è il vantaggio di poter posizionare le prese in  qualsiasi punto ed il bypass della sezione non utilizzata minimizza le perdite

 


 

[configurazione 80m]

Come detto lo stilo di base deve risuonare ed essere utilizzabile in banda 80 metri. La differenza dimensionale tra 1/4L e la lunghezza effettiva del radiatore è minima, quindi con un semplice induttore (variabile nel caso specifico) in serie impostato a poco più di 5uH si è ottenuto il perfetto adattamento, con minimo al confine tra CW e SSB ma comunque utilizzabile senza difficoltà fino ai limiti della banda assegnata. I primi test di funzionamento hanno dato risultati molto positivi ed incoraggianti. Sono seguiti testi di tenuta in keydown a 100 e 500w e infine a 1Kw che non hanno evidenziato difficoltà di sorta. L’induttanza variabile è un surplus (ricambio NOS) di stazione HF navale di alta potenza di produzione nazionale.


[configurazione 160m]

Siamo prossimi ad 1/10L quindi serve un rinforzo el circuito di adattamento.
La configurazione più semplice per l’uso anche in 160 è l’inserimento, a monte di quello per gli 80m, di una seconda induttanza variabile,  di valore adeguato e con la funzione di portare in risonanza lo stilo in banda ed adattarlo al meglio, da inserire sul circuito quando necessario. Per l’induttanza si è scelta la versione XL di quella utilizzata in 80. Stessa provenienza e stesso costruttore, dimensioni e valori elettrici decisamente più importanti. Sommando poco più di 38 uH a quelli già in uso per gli 80 si è ottenuto un adattamento ottimale in banda 160M. C’è un lieve disadattamento eventualmente compensabile, con l’ATU incorporato nell’RTX che non influisce su rendimento generale. Sono  seguiti test di funzionalità e “tenuta” come per gli 80M


 

[selezione banda]

La selezione della banda è stata la scelta più complessa e dispendiosa (in tempo)

varie le possibili soluzioni

  • Manuale (cavallotto locale)
  • Remota (con doppio relè alto isolamento)
  • Remota (con singolo relè alto isolamento o meglio sottovuoto)

Scartata quella manuale, la configurazione a doppio relè pur se realizzabile introduce troppi elementi di “rischio” soprattutto in caso di uso intensivo (contest)

Analizzando il lavoro di altri sperimentatori, in particolare di Phil (AD5X) ho scelto un approccio più diretto e semplice

  • le due induttanze sono collegate in serie e sempre inserite sul circuito
  • quella per i 160 viene bypassata con un relè ad alto isolamento o meglio sottovuoto per il funzionamento in 80M
  • tale configurazione non presenta particolari anomalie in 80 ed ha un solo punto critico di commutazione
  • l’utilizzo di un relè RF sottovuoto elimina drasticamente i rischi di archi interni (decisamente probabili con rele tradizionali anche “robusti”.


La commutazione “fisica” è realizzata con un relay sottovuoto NOS surplus di provenienza ex URSS facilmente reperibile online o sui mercatini a prezzi modici.

la denominazione occidentale è V2V-1V (originale B2B-1B) ed ha le seguenti caratteristiche

 

*Tensione di lavoro a 30 MHz: max. 4 kV
*Tensione di lavoro a 3 MHz: max. 5.5 kV
*Corrente a 30 MHz: max. 15 A
*Corrente a 3 MHz: max. 35 A
*Frequenza max: 30 MHz
*Tensione bobina: variabile da 10 a 30v in base al caso tipica 24v
*Tensione rilascio bobina : da 1 V
*Tempo di commutazione tipico: 35 ms
*Capacità in chiusura: 2.2 pF
*Resistenza di contatto: 0.015 Ω
*Resistenza bobina: 180 – 200 Ω
*Isolamento bobina: 500 V / 500 MΩ
*Temperatura di lavoro: -60 – +100 °C
*Vita operativa stimata: 100,000 commutazioni

Per valutarne meglio le dimensioni : i due morsetti ai lati del bulbo in vetro sono M8!
scheda tecnica  (in originale) V2V-1V


 

In uscita è presente un choke RF di tipo W2DU realizzato con RG-142 in teflon e 70 perline in ferrite Ferroxcube TN10/6/4-3E25, ognuna delle quali ha un Al 2250 e un Ui 5500 (decisamente superiori alle altre soluzioni disponibili sul mercato). Un secondo choke è presente all’ingresso in stazione; non è necessario ma è sempre meglio essere prudenti. E in ogni caso, come per ogni sistema di antenna, è sempre meglio tenere sotto controllo le CMC il più vicino possibile al punto di alimentazione. Il choke dovrebbe essere preferibilmente ottimizzato per la banda o le bande in uso, scegliendo opportunamente la miscela di ferrite più adatta. Inutile ricordare che i cosiddetti “ugly balun” ottenuti avvolgendo il coassiale a in aria a spirale e i toroidi a colori brillanti (polveri di ferro) sono totalmente inutili in bande basse, e marginali in quelle alte

 

circuito di adattamento (versione definitiva)

 


[telecomando]

Per i il comando a distanza ho scelto un normale telecomando a 2 canali (4 commutazioni) per cancelli in UHF con portata ben superiore a quella necessaria. La commutazione si effettua direttamente dalla stazione con il piccolo comando tascabile. Non esiste un feedback ottico sulla banda in uso ma è sufficiente osservare (o ascoltare) il livello del segnale per capirlo. Sono disponibili altre sezioni che rendono possible l’inserimento di una ulteriore sezione di adattamento in 40M.

RX telecomando (qui in versione 12V) quello utilizzato è in versione 24v

Sia il relè che il telecomando sono alimentati a 24 v. Il circuito prevede un alimentatore switching sigillato di tipo industriale ed un semplice filtro sulla CC con varistore, induttanza ed un paio di condensatori, oltre all’onnipresente diodo sulla bobina del relè.


circuito di adattamento (in fase di assemblaggio)

 

lavori in corso

 

[radiali]

La soluzione dei radiali al terreno è una scelta obbligata per l’impossibilità fisica di installare radiali sollevati. Con soli 4 o 8 radiali sollevati da terra si sarebbe potuta realizzare una ottima GP con angolo di radiazione basso e polarizzazione perfettamente verticale.

Si è sfruttato tutto il terreno disponibile stendendo oltre 300 metri di filo inox da 1mm in maniera il più possibile uniforme. I radiali non sono risonanti e di lunghezza variabile in base alla conformazione del terreno. Convergono a gruppi di 10 in un anello di rame che funge da “bus” di collegamento e sono stati ricoperti da un sottile strato di terra poi seminato. Non è una perfetta raggiera a 360 gradi ma svolge egregiamente il suo compito. In corso prove per verificare se installare ulteriori radiali sopra il terreno

[evoluzione]

è un progetto in continua evoluzione e i futuri punti di intervento saranno

  • ulteriore miglioramento efficienza con introduzione di cappello capacitivo. In questo modo si porterebbe la risonanza naturale in 80m eliminando il secondo induttore.
  • estensione per quanto possibile della superficie radiali
  • estensione in 40 metri

[misure]

— prossimamente —

[verifiche sul campo]

le prime verifiche sul campo in configurazione definitiva. I risultati in 80M sono decisamente soddisfacenti, con copertura globale, anche in ricezione dove solitamente il rumore prevarica il segnale. In 160 ovviamente esistono dei limiti sia in TX che in RX ma non è difficile in CW attraversare gli oceani…….

test SSB 80M
FT8 / 160

Nonostante l’assenza di tiranti la resistenza al forte vento montano è rimarchevole e senza particolari conseguenze.Grazie anche alla relativa elasticità degli stauff…….

FT8 / 80

stauff

ricalcolata 05/2020 (versione 80M)

su una impedenza di 22 ohm (da portare poi a 50 tramite UN-UN realizzato su una coppia di Ft240-43)

con poco più di 4uH di induttanza alla base

per i 160M sono necessari in totale circa 60uH

 

 


grazie a Phil AD5X per l’ispirazione e le idee

e come sempre a L. B. Cebik, W4RNL (SK) per i “sacri” testi che ci ha tramandato


K2AV ovvero contrappeso ripiegato

—- in aggiornamento ——

Il perenne dilemma in fase di progetto e installazione di antenne verticali HF , sia full che accorciate, è la realizzazione di un adeguato piano di terra o massa che dir si voglia…. (detto anche il secondo braccio dell’antenna)

Anche perché, si tratta in ogni caso della classica antenna 1/4 con piano di massa detta ance ground plane antenna ……. termine in disuso ……

Sia che si tratti di decine di radiali risonanti o non risonai distesi al suolo sia che si tratti di pochi elementi risonanti opportunamente sollevati da terra, non sempre lo spazio disponibile è adeguato o utilizzabile liberamente

Il classico esempio per una verticale bande basse mono o multibanda: un minimo di due radiali risonanti e sollevati dal terreno per ogni banda (160/80/40) disposti a 180 gradi tra loro.

Ancora più complesso stendere radiali sul terreno risonanti o no.. lo schema classico prevede un radiale ogni 3 gradi quindi per una corretta disposizione ne servono 120 disposti sui 360 gradi …… una gran massa di rame

Puo essere d’aiuto disporre di una superficie metallica, magari in rame, da sfruttare quale piano principale di terra subito sotto l’antenna……. ma anche questa situazione è decisamente rara

che fare?

esistono soluzioni di ripiego : singolo radiale lineare o parzialmente ripiegato, serie di paline di terra, radiali disposti a caso sul terreno i base alla disponibilità di spazio, configurazione mista sollevati e al terreno (non consigliabile ma se non c’è di meglio ) …….

 

In realtà esiste una soluzione pratica ed intelligente ma soltanto monomania, a meno di non intaccarne la “pulizia” e l’efficienza

parliamo di   FCP (Contrappeso Ripiegato) secondo il progetto di K2AV in 160

 

In pratica si tratta di installare un singolo contrappeso di lunghezza opportuna, ripiegato due volte in base allo schema che riporto sotto e accoppiato al radiatore e alla discesa tramite un trasformatore di adattamento con avvolgimento bifilare

—- in aggiornamento ——

http://www.balundesigns.com/content/FCP%20Design.pdf

 

 

Antenna VK6 (e travelling wave in generale)

La grande famiglia delle Antenne ad Onda Progressiva o Travelling Wave……
Caratterizzate dalla presenza di terminazioni resistive e che in particolari condizioni di progetto possono diventare estremamente direttive e con un buon guadagno. Ma per farlo la lunghezza dei singoli bracci deve essere almeno 1L (solitamente 2 o 3L!). L’efficienza è in parte ridotta a causa della dissipazione introdotta dalle resistenza, in compenso è possibile ottenere buoni adattamenti, spesso senza richiedere ATU, su gran parte della banda coperta. La lunghezza dell’elemento ( o del braccio) determina la possibilità di adattamento sulle bande più basse. La direttività è sempre verso la terminazione. Possono essere terminate a terra oppure no ma sono sempre caratterizzate da un gruppo resistivo di linearizzazione dell’impedenza abbinato ad un balun o un-un adeguato
Ne esistono diverse tipologie costruttive…. radiatore singolo, dipoli aperti, dipoli chiusi, U invertita,  versioni a v stretto (vee beam) che diventano estremamente direttive ed mostruosamente lunghe (2,3,4L!)….

Inverded U

vee beam

Fanno parte della famiglia anche le classiche T2FD e T3FD.

Le antenne terminate sono molto utilizzate in ambito professionale in quanto permettono operatività ALE e a salti di frequenza superando i limiti fisici degli ATU.

Per chi volesse approfondire l’argomento, il web è pieno di informazioni utili

ad esempio

W8JI

https://www.w8ji.com/rhombic_antennas.htm

https://www.w8ji.com/curtain%20sterba%20USIA%20array.htm

PA5A

http://www.pa5ca.com/pa6z/PROJECTS/ANTENNAS/RHOMBIC/rhombic.html

altri

http://www.iw5edi.com/ham-radio/files/Rhombic-Math.pdf


Ho trovato due esempi interessanti che pur distaccandosi in parte dalla rigidità della classica travelling wave, forniscono spunti di sperimentazione

Dalle nebbie del 1984 emerge un articolo, pubblicato da Bill W6SAI (SK) e portato in Europa da Folke SM4HJ (SK), a proposito di una antenna sviluppata da  due colleghi australiani John VK6IM e Cres VK6YX

Si tratta di un radiatore da poco più di 22m di lunghezza, non risonante, che presenta una induttanza con terminazione in linea a circa 1/3 dall’estremità. L’adattamento avviene per mezzo di un trasformatore dedicato. Completano il tutto un collegamento di terra e, secondo me, anche un bel W2DU direttamente sulla discesa……..

Dà il meglio di se installata verticale o sloping. Da valutare l’impatto di radiali e/o contrappesi

Ruediger DC4FS è un utilizzatore in portatile e sembrerebbe una ottima soluzione di compromesso per uso campale multibanda

Misure DC4FS

nb: Sono in procinto di realizzarne una e nel frattempo vi allego il documento originale



Restando in VK, in tempi più recenti Peter VK6YSF, oltre ad aver lavorato sulle classiche terminate,  ne ha progettato una versione  a dipolo, senza la bobina, e con le sole resistenze a 1/3 dall’estremità.
Due bracci da poco più di 23m connessi ad un Balun 9:1 (non UN-UN!). In questo caso R sarà prossimo a 225ohm e in grado di dissipare almeno la metà della potenza massima utilizzata.

Ovviamente parliamo di resistenze non induttive!

maggiori informazioni e plots al suo sito

U invertita

https://vk6ysf.com/Travelling_Wave_Antenna.htm

Dipolo

https://vk6ysf.com/broadband_hf_dipole_V2.htm


Credits : W6SAI (SK)/ SM4HJ (SK)/ VK6IM / VK6YX / DC4FS / VK6YSF / W8JI / PA5CA

adattamento stili veicolari monobanda

una semplice soluzione per adattare stili veicolari monobanda (MFJ e simili) all’uso in stazione base (grazie a PD7MAA per l’idea)
lo stilo deve essere fissato su di un supporto isolante. in pratica deve essere isolata dalla terra/massa locale

solitamente alla base c’è un adattatore da 3/8″ a SO239 (pl femmina)

tramite un connettore a T collegare da un lato la discesa verso l’RTX dall’altro un tratto di cavo coassiale lungo 1/4 d’onda alla frequenza in uso moltiplicato per il fattore di velocità (tipicamente 0.66 se rg58/8/213)

il lato libero del “radiale” deve avere il conduttore centrate cortocircuitato con lo schermo. La lunghezza è calcolata dalla formula

L= 300000/F

l4=L/4

lr=l4*.066

in pratica ad esempio per 80 metri sottobanda cw centrata a 3538 khz

300000/3538 = 84,785

84,785/4 = 21,196

21,196*.66=13,99 metri -> lunghezza del radiale.

il radiale deve essere disposto in orizzontale e sollevato da terra di almeno 1.5 metri. alla stessa altezza deve essere fissata la base dell’antenna. E’ possibile anche utilizzare un secondo radiale ma il cablaggio si complica. Naturalmente la misura indicata è una base di partenza può essere utili accorciarlo per adattare meglio l’antenna

il risultato della misura la dice tutta. la banda passante  è quella tipica di questi stili per 2:1 di swr, quindi perfettamente utilizzabile anche senza accordatore.

Come si può vedere, per limiti fisici e per un probabile accoppiamento con il supporto o con l’ambiente circostante, l’impedenza minima, pur se sotto controllo, è lontana, ma non troppo, dagli ideali 50ohm.

Che fare?

 

due soluzioni … la prima la più semplice un colpetto di accordatore …. ma così è troppo facile

per la seconda dobbiamo chiedere un consiglio al buon  Phillip H. Smith o meglio alla sua “carta”. In passato erano necessari parecchi passaggi e calcoli per arrivare ad una soluzione di adattamento basata sulla carta, a meno di non possedere sofisticati ( e costosi) network analyzers. Esistono per fortuna soluzioni software free o  basso costo che ci consentono di superare il problema

nel nostro caso…. l’analisi alla base indica una impedenza di  70.4 ohms di impedenza con una parte X pari a 14.9 johms  pari a poco meno di 1.5 di swr

utilizzando una cella lc di compensazione (configurazione low pass, con capacità in parallelo lato antenna), sim smith effettua tutti calcoli per noi

  

con 555pf (arrotondati al valore più prossimo) e 1.55uH si ottiene magicamente

 

oltre al perfetto adattamento di impedenza si nota come la “finestra” di usabilità con swr=2 si estende a 100khz e basandoci su swr=3 si raggiungono i 200khz

un bel risultato niente male

attenzione! è sempre bene sovradimensionare i componenti dell cella LC. Condensatori ad alta tensione (possibilmente adatti all’uso in RF) e induttanze in aria di diametro adeguato realizzate in rame smaltato o argentato da almeno 1mm. Nel caso specifico un condensatore da 320pf e uno da 230pf. L’induttanza ha un valore di poco superiore (e intero) rispetto a quello richiesto ma “modificandola” fisicamente si arriva ad un risultato ottimale

il prototipo in fase di ottimizzazione

in alternativa, è possibile effettuare un classico adattamento serie con coassiale a 75 ohm

con l’aiuto dell’applicazione SMC (Series Matching Calculator) evitiamo i relativi calcoli.

esempio, a 3.53 mhz con 6.748 metri di rg58 (o 213) sotto l’antenna in serie a 4.624 metri di RG59 (o 11) subito dopo, otteniamo il corretto adattamento a 50 ohm

—————————————————————————————————

esempio 30 e 40 m (1 radiale risonante per banda)

 

 

Quando le differenze rispetto al’ottimale sono minime (è il caso delle versioni 30 e 40m), si può inserire il classico hairpin. 10/12 spire di filo di almeno 4mmq su di un supporto in aria da 8/10 cm di diametro tra lo stilo e la massa (radiale) variando la spaziatura tra le spire o al limite eliminandone una o due si arriva ad un adattamento ottimale… oppure volendo procedere con modalitaà scientifica…..

 

in alternativa … come detto sopra…….

tnx DJ0IP

 

Operando qrp si può scegliere l’RG-174 come conduttore per il radiale.

L’unica regolazione è la sintonia/adattamento dello stilo utilizzando la barretta di taratura incorporata.

Mi raccomando, la base dell’antenna deve essere isolata dal supporto e non a massa!

Ultimo esperimento…….. utilizzare un unico supporto per due stili e 2 radiali

Provato con 30+40 metri (stessi radiali come sopra) ed ecco il risultato

 

perfettamente utilizzabile senza accordatore

meglio di così……

risultati? K,VU,JA,R0 in CW……. alla caccia di VK e ZL

soluzione alternativa: utilizzare sempre un supporto isolato per lo stilo e collegare quanti più possibili radiali non risonanti sollevati dal terreno di alcuni cm.

Idealmente da posizionare sui 360 gradi (fino a 120) e ovviamente riducendo lo spazio utilizzato in funzione di quello disponibile. Piuttosto che distribuirli a caso sui 360 gradi, meglio concentrarli verso direzioni specifiche in una configurazione triangolare. I risultati non mancheranno

 

per migliorare ulteriormente l’efficienza e soprattutto la resistenza di radiazione è consigliabile inserire un cappello capacitivo posizionato il più in alto possibile e lontano dalla bobina alla base.

ho inserito una barra con innesti filettati alle estremità lunga circa 40cm e sulla parte superiore ho fissato un disco realizzato con lamiera grigliata di poco più di 30cm di diametro.

Lo stilo vero e proprio parte dal disco e naturalmente risulta molto più coperto che nella versione “nuda”, sia per la presenza della prolunga che del cappello capacitivo

e questo è il risultato senza rete di adattamento

 

per ulteriori informazioni ed un utile foglio di calcolo

http://www.qsl.net/aa3rl/tlcalc1.html