Antenna VK6 (e travelling wave in generale)

La grande famiglia delle Antenne ad Onda Progressiva o Travelling Wave……
Caratterizzate dalla presenza di terminazioni resistive e che in particolari condizioni di progetto possono diventare estremamente direttive e con un buon guadagno. Ma per farlo la lunghezza dei singoli bracci deve essere almeno 1L (solitamente 2 o 3L!). L’efficienza è in parte ridotta a causa della dissipazione introdotta dalle resistenza, in compenso è possibile ottenere buoni adattamenti, spesso senza richiedere ATU, su gran parte della banda coperta. La lunghezza dell’elemento ( o del braccio) determina la possibilità di adattamento sulle bande più basse. La direttività è sempre verso la terminazione. Possono essere terminate a terra oppure no ma sono sempre caratterizzate da un gruppo resistivo di linearizzazione dell’impedenza abbinato ad un balun o un-un adeguato
Ne esistono diverse tipologie costruttive…. radiatore singolo, dipoli aperti, dipoli chiusi, U invertita,  versioni a v stretto (vee beam) che diventano estremamente direttive ed mostruosamente lunghe (2,3,4L!)….

Inverded U
vee beam

 

Fanno parte della famiglia anche le classiche T2FD e T3FD.

Le antenne terminate sono molto utilizzate in ambito professionale in quanto permettono operatività ALE e a salti di frequenza superando i limiti fisici degli ATU.

Per chi volesse approfondire l’argomento, il web è pieno di informazioni utili

ad esempio

W8JI

https://www.w8ji.com/rhombic_antennas.htm

https://www.w8ji.com/curtain%20sterba%20USIA%20array.htm

PA5A

http://www.pa5ca.com/pa6z/PROJECTS/ANTENNAS/RHOMBIC/rhombic.html

altri

http://www.iw5edi.com/ham-radio/files/Rhombic-Math.pdf

 


Ho trovato due esempi interessanti che pur distaccandosi in parte dalla rigidità della classica travelling wave, forniscono spunti di sperimentazione

Dalle nebbie del 1984 emerge un articolo, pubblicato da Bill W6SAI (SK) e portato in Europa da Folke SM4HJ (SK), a proposito di una antenna sviluppata da  due colleghi australiani John VK6IM e Cres VK6YX

Si tratta di un radiatore da poco più di 22m di lunghezza, non risonante, che presenta una induttanza con terminazione in linea a circa 1/3 dall’estremità. L’adattamento avviene per mezzo di un trasformatore dedicato. Completano il tutto un collegamento di terra e, secondo me, anche un bel W2DU direttamente sulla discesa……..

Dà il meglio di se installata verticale o sloping. Da valutare l’impatto di radiali e/o contrappesi

Ruediger DC4FS è un utilizzatore in portatile e sembrerebbe una ottima soluzione di compromesso per uso campale multibanda

 

Misure DC4FS

nb: Sono in procinto di realizzarne una e nel frattempo vi allego il documento originale



Restando in VK, in tempi più recenti Peter VK6YSF, oltre ad aver lavorato sulle classiche terminate,  ne ha progettato una versione  a dipolo, senza la bobina, e con le sole resistenze a 1/3 dall’estremità.
Due bracci da poco più di 23m connessi ad un Balun 9:1 (non UN-UN!). In questo caso R sarà prossimo a 225ohm e in grado di dissipare almeno la metà della potenza massima utilizzata.

Ovviamente parliamo di resistenze non induttive!

 

 

maggiori informazioni e plots al suo sito

U invertita

https://vk6ysf.com/Travelling_Wave_Antenna.htm

Dipolo

https://vk6ysf.com/broadband_hf_dipole_V2.htm


Credits : W6SAI (SK)/ SM4HJ (SK)/ VK6IM / VK6YX / DC4FS / VK6YSF / W8JI / PA5CA

Verticale bande basse per spazi ridotti

——- Lavori in corso ——

… e accettabili compromessi …….

ovvero : la verticale a modo mio 

un collega mi ha chiesto di aiutarlo a realizzare una verticale in banda 80 metri, con possibilità a comando di utilizzo in 160 ed eventualmente anche in 40.

Parametri di progetto: spazio ridotto, impatto visivo ed ambientale accettabili, buona efficienza

andiamo con ordine

[progetto]

la teoria di funzionamento e progettazione di una verticale è chiara e ampiamente diffusa seppur con diverse interpretazioni. Nel nostro caso per ragioni anche meccaniche, uno stilo di circa 20 metri (1/4L) è impraticabile, quindi….

  1. Altezza massima: circa 17 metri
  2. Materiali: tubo in alluminio con diametri variabili tra 60 e 19mm e spessori adeguati a supportare la struttura. Sezioni da 220cm bloccate con morsetti inox per usi intensivi.
  3. Base : profilo “T” su base interrata in cemento. Bloccaggio radiatore con 3 morsetti Stauff e abbattimento manuale
  4. Piano di terra: a raggiera alla base ricoperto da sottile strato di terra. Opzione per altri radiali sopra il terreno anche sollevati (vedi sotto)
  5. Cablaggi interni in rame argentato isolato in teflon
  6. Bulloneria inox.

Per esperienze precedenti si è scelto di non installare un sistema di tiranti. Nonostante i forti venti presenzi in zona non si sono verificati particolari problemi….. salvo la normale “dinamica” meccanica……


 

[adattamento] quanto riguarda l’adattamento, la scelta di effettuarlo alla base è la via più semplice e aperta ad interventi evolutivi

Si può costruire un induttanza fissa con prese multiple commutabili oppure utilizzare un induttore variabile  motorizzato e controllato a distanza. Ho scelto di utilizzare due induttanze variabili in serie che consentono un migliore affinamento del sistema radiante. L’intero sistema di adattamento è contenuto in una scatola stagna posizionata alla base dell’antenna.

è a tutti gli effetti un classico L-Match. Se realizzato con materiali idonei permette di ottenere la massima efficienza pur essendo circuitale te molto semplice.

Potrebbe essere sostituito da una induttanza a prese multiple ma qui c’è il vantaggio di poter posizionare le prese in  qualsiasi punto ed il bypass della sezione non utilizzata minimizza le perdite

 


 

[configurazione 80m]

Come detto lo stilo di base deve risuonare ed essere utilizzabile in banda 80 metri. La differenza dimensionale tra 1/4L e la lunghezza effettiva del radiatore è minima, quindi con un semplice induttore (variabile nel caso specifico) in serie impostato a poco più di 5uH si è ottenuto il perfetto adattamento, con minimo al confine tra CW e SSB ma comunque utilizzabile senza difficoltà fino ai limiti della banda assegnata. I primi test di funzionamento hanno dato risultati molto positivi ed incoraggianti. Sono seguiti testi di tenuta in keydown a 100 e 500w e infine a 1Kw che non hanno evidenziato difficoltà di sorta. L’induttanza variabile è un surplus (ricambio NOS) di stazione HF navale di alta potenza di produzione nazionale.


[configurazione 160m]

Siamo prossimi ad 1/10L quindi serve un rinforzo el circuito di

adattamento. La configurazione più semplice per l’uso anche in 160 è l’inserimento, a monte di quello per gli 80m, di una seconda induttanza variabile,  di valore adeguato e con la funzione di portare in risonanza lo stilo in banda ed adattarlo al meglio, da inserire sul circuito quando necessario. Per l’induttanza si è scelta la versione XL di quella utilizzata in 80. Stessa provenienza e stesso costruttore, dimensioni e valori elettrici decisamente più importanti. Sommando poco più di 38 uH a quelli già in uso per gli 80 si è ottenuto un adattamento ottimale in banda 160M. C’è un lieve disadattamento eventualmente compensabile, con l’ATU incorporato nell’RTX che non influisce su rendimento generale. Sono  seguiti test di funzionalità e “tenuta” come per gli 80M


 

[selezione banda]

La selezione della banda è stata la scelta più complessa e dispendiosa (in tempo)

varie le possibili soluzioni

  • Manuale (cavallotto locale)
  • Remota (con doppio relè alto isolamento)
  • Remota (con singolo relè alto isolamento o meglio sottovuoto)

Scartata quella manuale, la configurazione a doppio relè pur se realizzabile introduce troppi elementi di “rischio” soprattutto in caso di uso intensivo (contest)

Analizzando il lavoro di altri sperimentatori, in particolare di Phil (AD5X) ho scelto un approccio più diretto e semplice

  • le due induttanze sono collegate in serie e sempre inserite sul circuito
  • quella per i 160 può essere bypassata con un relè ad alto isolamento o meglio sottovuoto
  • tale configurazione non presenta particolari anomalie in 80 ed ha un solo punto critico di commutazione
  • l’utilizzo di un relè RF sottovuoto elimina o comunque riduce drasticamente i rischi di archi.

In uscita è presente un choke RF di tipo W2DU realizzato con RG-142 in teflon e 70 perline FB73-2401. Un secondo choke è presente all’ingresso in stazione; non è necessario ma è sempre meglio essere prudenti. E in ogni caso, come per ogni sistema di antenna, è sempre meglio tenere sotto controllo le CMC il più vicino possibile al punto di alimentazione. Il choke dovrebbe essere preferibilmente ottimizzato per la banda o le bande in uso, scegliendo opportunamente la miscela di ferrite più adatta. Inutile ricordare che i cosiddetti “ugly balun” ottenuti avvolgendo il coassiale a in aria a spirale e i toroidi a colori brillanti (polveri di ferro) sono totalmente inutili in bande basse, e marginali in quelle alte

circuito di adattamento (versione definitiva)

Relè sottovuoto V2V-1V

 


[telecomando]

Per i il comando a distanza ho scelto un normale telecomando a 2 canali (4 commutazioni) per cancelli in UHF con portata ben superiore a quella necessaria. La commutazione si effettua direttamente dalla stazione con il piccolo comando tascabile. Non esiste un feedback ottico sulla banda in uso ma è sufficiente osservare (o ascoltare) il livello del segnale per capirlo. Sono disponibili altre sezioni che rendono possible l’inserimento di una ulteriore sezione di adattamento in 40M.

Sia il relè che il telecomando sono alimentati a 24 v. Il circuito prevede un alimentatore switching sigillato di tipo industriale ed un semplice filtro sulla CC con varistore, induttanza ed un paio di condensatori, oltre all’onnipresente diodo sulla bobina del relè. Quest’ultimo, inizialmente un modello industriale ad alto isolamento e tre sezioni è stato poi sostituito da un sottovuoto di provenienza ex USSR


circuito di adattamento

prototipo adattamento
Prototipo sistema di adattamento alla base (versione preliminare con relè tradizionale)

 

[radiali]

La soluzione dei radiali al terreno è una scelta obbligata per l’impossibilità fisica di installare radiali sollevati. Con soli 4 o 8 radiali sollevati da terra si sarebbe potuta realizzare una ottima GP con angolo di radiazione basso e polarizzazione perfettamente verticale.

Si è sfruttato tutto il terreno disponibile stendendo oltre 300 metri di filo inox da 1mm in maniera il più possibile uniforme. I radiali non sono risonanti e di lunghezza variabile in base alla conformazione del terreno. Convergono a gruppi di 10 in un anello di rame che funge da “bus” di collegamento e sono stati ricoperti da un sottile strato di terra poi seminato. Non è una perfetta raggiera a 360 gradi ma svolge egregiamente il suo compito. In corso prove per verificare se installare ulteriori radiali sopra il terreno

[evoluzione]

è un progetto in continua evoluzione e i futuri punti di intervento saranno

  • ulteriore miglioramento efficienza con introduzione di cappello capacitivo. In questo modo si porterebbe la risonanza naturale in 80m eliminando il secondo induttore.
  • estensione per quanto possibile della superficie radiali
  • estensione in 40 metri

[misure]

— prossimamente —

[verifiche sul campo]

le prime verifiche sul campo in configurazione definitiva. I risultati in 80M sono decisamente soddisfacenti, con copertura globale, anche in ricezione dove solitamente il rumore prevarica il segnale. In 160 ovviamente esistono dei limiti sia in TX che in RX ma non è difficile in CW attraversare gli oceani…….

test SSB 80M

 

FT8 80/160

 

test CW 160M

 

 

Nonostante l’assenza di tiranti la resistenza al forte vento montano è rimarchevole e senza particolari conseguenze.

Grazie anche alla relativa elasticità degli stauff…….

Morsetto Stauff

 

 

 

 

 

 

 

 

 

 

 

 


grazie a Phil AD5X per l’ispirazione e le idee

e come sempre a L. B. Cebik, W4RNL (SK) per i “sacri” testi che ci ha tramandato